

JAIDEV EDUCATION SOCIETY'S

JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u> E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge"

Session: 2024-25

VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2. To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Τ	Р	Credits
VII	ET7T001	Digital Communication	3	0	0	3

	Prerequisites for the course
1	Basic knowledge of communication engineering

Prior Reading Material / useful links			
1	https://www.ojcmt.net/article/digital-communication-in-educational-process-		
	development-trends-and-new-opportunities-7928		
2	https://journals.ala.org/index.php/lrts/article/view/5158/6260		

Sr.No	Course outcome number	CO statement
1	CO1	Understand various techniques of digital communication Systems.
2	CO2	Explain the knowledge of waveform coding and practice related to Digital communication.
3	CO3	Identify and solve engineering problems related to Mobile communication system.
4	CO4	Analyze the spectral characteristics of band pass signaling schemes and their noise performance.
5	CO5	Design error control coding schemes.

	Course Contents
Unit I	Information Theory
	Discrete Memoryless source, Information, Entropy, Mutual Information-Discrete
	Memory less channels – Binary Symmetric Channel, Channel Capacity -Hartley-
	Shannon law - Source coding theorem - Shannon – Fano & Huffman codes.
	[5Hours]
Unit II	Waveform Coding & Representation
	Prediction filtering and DPCM - Delta Modulation - ADPCM & ADM principles-
	Linear Predictive Coding- Properties of Line codes- Power Spectral Density of
	Unipolar / Polar RZ & NRZ – Bipolar NRZ– Manchester [6Hours]
Unit III	Baseband Transmission & Reception
	ISI – Nyquist criterion for distortion less transmission – Pulse shaping –
	Correlativecoding-Eyepattern–ReceivingFilters-MatchedFilter,Correlation
	receiver, Adaptive Equalization [6Hours]
Unit IV	Digital Modulation Scheme
	Geometric Representation of signals - Generation, detection, PSD & BER of
	Conerent BPSK, BFSK & QPSK-QAM-Carrier Synchronization-Structure of
TT	Non-coherent Receivers – Principle of DPSK. [7Hours]
Unit v	Error Control Coding
	Channel coding theorem - Linear Block codes - Hamming codes - Cyclic codes -
Linit VI	Convolutional codes – viterol Decoder. [/Hours]
	Callular Talaphone systems: Digital callular talaphone. Mobile communication
	system. Role of mobile communication, mobile hotspot, and mobile applications
	related to rural development GPS [5Hours]
	Tayt Pools
1	S Havkin — Digital Communications John Wiley 2015
2	B.P. Lathi and Z. Ding, "Modern Digital and Analog Communication Systems"
2	4th Ed., Oxford University Press, 2009
	Reference Books
1	T. M. Cover and J. A. Thomas, "Elements of Information Theory," Wiley
	Student Edition, 1999, Reprint 2009
2	J.G Proakis, —Digital Communication, 4th Edition, Tata McGraw Hill
	Company, 2001.
	Useful links
1	https://www.researchgate.net/publication/268508509_Types_of_E- Resources and its utilities in Library
2	https://www.ojcmt.net/article/digital-communication-in-educational-process-
	development-trends-and-new-opportunities-7928
3	https://journals.ala.org/index.php/lrts/article/view/5158/6260

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOLROAD,NAGPUR Website:<u>www.idcoem.ac.in</u>E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC ''A'' Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	P	Credits
VII	ET7E002BC	Optical Communication	3	0	0	3
		Networks				

	Prerequisites for the course
1	Basic knowledge of communication engineering

Prior Reading Material / useful links		
1	https://nptel.ac.in/courses/108/106/108106167/	
2	https://nptel.ac.in/courses/117101054	

Sr. No	Course	CO statement		
	outcome number			
1	CO1	Explain the principles of operation of various optical fiber communication systems.		
2	CO2	Analyze the performance of various digital and analogue optical fiber systems.		
3	CO3	Determine various key parameters of optical fiber systems.		
4	CO4	Evaluate the factors affecting the performance of different optical fibre communication systems.		
5	CO5	Design Optical networks		

	Course Contents
Unit I	Overview of Optical Fiber Wave Guides
	General system, transmission link, advantage of optical fiber communication, basic structure of optical fiber waveguide, ray theory transmission, optical fiber modesandconfiguration, stepindex&gradedindexfiber, singlemodefiber,
	fiber materials , fiber fabrication. [6Hours]
Unit II	Signal Degradation in Optical Fiber
	Introduction, attenuation, intrinsic & extrinsic absorption losses, linear & nonlinear scattering losses, bending losses, distortion in optical wave guide, intramodal and intermodal dispersion. Power launching and coupling Source to fiberpowerlaunching, powercalculation, lensing schemes, fibertofiberjoints, fiber splicing technique, fiber connectors. [7Hours]
Unit III	Optical Sources
	LASER: Basic concepts of laser, Optical emission from semiconductors, Semiconductor injection laser (ILD), Injection laser characteristics.LED: power and efficiency, LED structures, LED characteristics. Optical detectors: p-n photodiodes, P-I-N photodiodes, Avalanche photodiodes, Quantum efficiency, speed of response, Phototransistor. [6Hours]
Unit IV	Optical Receiver
	Receiver operation, digital receiver noise, shot noise, pre-amplifier types, Digital receiver performance, introduction to analog receivers. [5Hours]
Unit V	Digital Transmission Systems
	Point to point links, system considerations, link power budget, rise time budget,
	modulation formats for analog communication system, introduction to WDM
	concepts, Introduction to advance de multiplexing strategies. [7Hours]
Unit VI	Optical Networks [6 Hours]
	Basic networks-SONET/SDH-wavelength routed networks, nonlinear effects on
	network performance, performance of various systems (WDM, DWDM +SOA).
1	G Keiser: Optical Fiber Communication – MGH
2	Inkins & White: Fundamentals of Ontics – MGH
	Reference Books
1	Bhattacharya, Pallab / "Semiconductor Optoelectronics Devices" /Pearson Education.
2	Singh, Jasprit / "Optoelectronics An Introduction to Materials and Devices"/ McGraw-Hill
3	Khare, R.P. / "Fiber Optics & Optoelectronics" / Oxford University Press
	Useful links
1	https://nptel.ac.in/courses/108/106/108106167/
2	https://nptel.ac.in/courses/117101054

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOLROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u> E-mail<u>:info@jdcoem</u>.ac.in

(An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai

Department of Electronics and Telecommunication Engineering

"Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

	2024-23
VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2.To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Τ	P	Credits
VII	ET7E002C	Advanced Cellular	3	0	0	3
		Communication				

	Prerequisites for the course
1	Basic knowledge of Digital and wireless Communication System.

	Prior Reading Material / useful links
1	https://crln.acrl.org/index.php/crlnews/article/view/8545/8878
2	https://eudl.eu/journal/mca
3	https://www.researchgate.net/publication/286455750_mobile_technolo
	gy_in_libraries_for_discovering_e-resources_and_services

Sr.No	Course outcome number	CO statement
1	CO1	Understand the concept of cellular wireless communication system
2	CO2	Understand the emerging technologies required for fourth and fifth generation mobile systems.
3	CO3	Explain GSM mobile communication architecture, logical channels, advantages and limitations.
4	CO4	Apply frequency-reuse concept in mobile communications, and to analyze its effects on interference, system capacity, handoff techniques.
5	CO5	Analyze various methodologies to improve the cellular Capacity.
6	CO6	Compare various radio access technologies for 5G networks.

	Course Contents
Unit I	Introduction to Wireless communication Wireless communication systems,
	Applications of wireless communication systems, Types of wireless
	communication systems, trends in mobile communication systems. [4 Hours]
Unit II	Cellular Mobile Systems
	Basic cellular systems, Performance criteria, Uniqueness of mobile radio
	environment, Operation of cellular systems, analog & digital cellular systems.
	[6 Hours]
Unit III	Elements of Cellular Radio System Design
	Concept of frequency reuse channels, Co-channel interference reduction factor,
	Desired C/I from a normal case in an omni directional antenna system, Handoff
	mechanism, Cell splitting. [6Hours]
Unit IV	Interference in Cellular Mobile System
	Co-channel interference, Design of an omni directional antenna system in the
	worst case, Design of a directional antenna system, Lowering the antenna height,
	Power control, Reduction in CI by tilting antenna, umbrella pattern effect
	Adjacent-channel interference, Near-end – far-end interference, Effect on near-
TT:4 X7	end mobile units. [/Hours]
Unit v	Frequency Management, Channel Assignment and Handons
	channel assignment schemes. Non fixed channel assignment schemes. Concept
	of handoff Initiation of a hard handoff. Delaying a handoff. Forced handoffs
	Oueuingofhandoffs Powerdifferencehandoffs Mobileassistedhandoff Soft
	handoffs Cell-site handoff Intersystem handoff dropout calls [7Hours]
Unit VI	GSM System Overview Over Wireless Networks And 5G Technology
	GSM system architecture. GSM radio subsystem. GSM channel types. Frame
	structure for GSM, Signal processing in GSM, GPRS and EDGE. Overview of
	Wi-Fi, Wi-MAX and Bluetooth technology (Basic features and physical
	specifications).5G architecture, D2D: from 4G to 5G - Radio Resource
	Management for Mobile Broadband D2D –5G radio access technologies.
	[8 Hours]
	Text Books
1	Mobile Cellular Telecommunications: Analog and Digital Systems by William C.
2	Y. Lee; Tata McGraw Hill Publication.
Z	H. Labiod, H. Afifi, C. De Santis: WI-FI, BLUEIOUIH, ZIGBEE and WIMAX-
	Beference Books
1	Asif Oseiran, Jose F. Monserrat and Patrick Marsch, "5G Mobile and Wireless
_	Communications Technology". Cambridge University Press, 2016.
2	Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", Wiley, 2015
3	Patrick Marsch, Omer Bulakci, Olav Oueseth and Mauro Boldi, "5G System
	Design – Architectural and Functional Considerations and Long Term Research",
	Wiley, 2018arson
	Useful links
1	https://crln.acrl.org/index.php/crlnews/article/view/8545/8878
2	https://eudl.eu/journal/mc
3	https://www.researchgate.net/publication/286455750_mobile_technology_in_libr
	aries_for_discovering_e-resources_and_services

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOLROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u> E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

<u>VISION</u>	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2.To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	Р	Credits
VII	ET7E003A	Verilog HDL	3	0	0	3

Prerequisites for the course							
1	Basic Microc	knowledge ontroller.	of	Digital	Circuits,	Microprocessor	and

	Prior Reading Material / useful links
1	https://onlinecourses.nptel.ac.in/noc19_cs73
2	https://www.classcentral.com/course/swayam-synthesis-of-digital-
	systems-10067

Sr.No	Course outcome number	CO statement
1	CO1	Relate VHDL and Verilog.
2	CO2	Understand the Digital Design with Verilog HDL
3	CO3	Identify the various modules and ports in Digital Design with Verilog HDL.
4	CO4	Compare the task and functions and make use of useful modeling techniques
5	CO5	Analyze the gate level, data flow and behavioral modeling of Digital Design with Verilog HDL.
6	CO6	Design digital systems with various constraints.

	Course Contents
Unit I	Overview of Digital Design with Verilog HDL
	Evolution of CAD, emergence of HDLs, typical HDL-based design flow, why
	Verilog HDL? Trends in HDLs.
	Hierarchical Modeling Concepts
	Top-down and bottom-up design methodology, differences between modules and
	module instances, parts of a simulation, design block, stimulus block. [6Hours]
Unit II	Modules and Ports
	Lexical conventions, data types, system tasks, compiler directives, Module
	definition, port declaration, connecting ports, hierarchical name referencing.
	[5 Hours]
Unit III	Gate-Level Modeling
	Modeling using basic Verilog gate primitives, description of and/or and buf/not
	type gates, rise, fall and turn-off delays, min, max, and typical delays. [7Hours]
Unit IV	Dataflow Modeling
	Continuous assignments, delay specification, expressions, operators, operands,
	operator types. [6Hours]
Unit V	Behavioral Modeling
	Structured procedures, initial and always, blocking and non blocking statements,
	delay control, generate statement, event control, conditional statements, multi way
	branching, loops, sequential and parallel blocks. [6Hours]
Unit VI	Tasks, Functions & Useful Modeling Techniques
	Differences between tasks and functions, declaration, invocation, automatic tasks
	and functions. Procedural continuous assignments, overriding parameters,
	conditional compilation and execution, useful system tasks. [7Hours]
	Text Books
1	Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition, Samir
	Palnitkar, Prentice Hall PTR, February 21, 2003
1	Reference Books
1	Steve Kilts, "Advanced FPGA Design: Architecture, Implementation and
2	Optimization", J. Wiley and Sons, 2007.
2	Seetharaman Ramachandran, "Digital VLSI Systems Design", Springer Verlag,
2	$\frac{2012}{1000}$
3	Peter J. Ashenden, "The designer's guide top VHDL", Morgan Kautmann, 2008.
4	Charles H. Roth Jr., "Digital Systems Design using VHDL", Cengage
5	Digital System Design–John Wakerley, McGraw Hill Publications.
	Useful links
1	https://onlinecourses.nptel.ac.in/noc19_cs73
2	https://www.classcentral.com/course/swayam-synthesis-of-digital-systems- 10067

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD,NAGPUR Website:<u>www.idcoem.ac.in</u> E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering

"Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2.To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	Р	Credits
VII	ET7E003B	UHF & Microwave	3	0	0	3
		Engineering				

Prerequisites for the course		
1	Basic knowledge of Electromagnetic field and Antenna & Wave	
	Propagation.	

Prior Reading Material / useful links	
1	https://archive.nptel.ac.in/courses/108/101/108101112/#watch
2	https://youtu.be/NW1NXoM4q5c
3	https://onlinecourses.nptel.ac.in/noc20_ee91/preview

Sr.No	Course outcome number	CO statement
1	CO1	Explain the use of active and passive microwave devices.
2	CO2	Demonstrate the use of different Klystrons, magnetron devices.
3	CO3	Analyze different UHF components with the help of scattering parameters.
4	CO4	Describe micro strip lines.
5	CO5	Analyze the different power distribution Tees.
6	CO6	Describe the transmission and waveguide structures and how they are used as elements in impedance matching and filter circuits.

	Course Contents
Unit I	Microwave Active Devices (O-type) Interaction of electron beam with
	electromagnetic field, power transfer condition. Principles of working of two
	cavity and Reflex Klystrons, arrival time curve and oscillation conditions in
	Reflex klystrons, mode-frequency characteristics, Effect of repeller voltage
	variation on power and frequency of output. Slow wave structures, Principle and
	working of TWT amplifier &BWO Oscillator. [6Hours]
Unit II	Microwave Active Devices (M-type)
	Principle of working of M-type TWT, Magnetrons, Electron dynamics in planar
	and cylindrical Magnetrons, Cut off magnetic field, phase focusing effect, mode
	operation, Mode separation techniques, Tuning of magnetron. [7Hours]
Unit III	Transmission Line
	Input impedance, Standing wave distribution, Quarter Wave and Stub Matching
	using Smith chart, losses in Transmission lines, Planar Transmission line types,
	Introduction - Types of MICs and their technology, Fabrication process of MMIC,
	Hybrid MICs. [6Hours]
Unit IV	Microwave Networks and Passive Components
	Transmission line ports of microwave network, Scattering matrix, Properties of
	scattering matrix of reciprocal, nonreciprocal, loss-less, Passive networks,
	Examples of two, three and four port networks, wave guide components like
	attenuator. Principle of operation and properties of E-plane, H-plane Tee junctions
	of wave guides, Hybrid T, Directional couplers, Microwave resonators-
	rectangular, Excitation of wave guide and resonators .Principles of operation of
	non-reciprocaldevices, properties offerrites, Gyrators, Isolators, Circulator and
	Phase shifters. [8Hours]
Unit V	Microwave Measurements
	Function of Tuning Probes, Detector mounts and Detector diode, Slotted line
	section and VSWR meter, Measurement of wave-guide impedance at load port by
	slotted line, Measurement of scattering matrix parameters, High, Medium and low-
	level power measurement techniques, Characteristics of bolometer, bolometer
	mounts, Power measurement bridges, Calorimetric method, Microwave frequency
	measurement techniques, calibrated resonators (transmission and absorption type),
T T 1 / T T	Network Analyzer and its use in measurements.[6Hours]
Unit VI	Microwave Solid State Devices and Application
	PIN diodes-Properties and applications, Microwave detector diodes-detection
	characteristics, Varactor diodes, Parametric amplifier fundamentals-Manley-Rowe
	Power relation, MASERS, Transferred electron devices, Gunn effect, Various
	DADITT
	DARIII. [000018]
1	Semual V. Line, 'Microwaya Davian and Circuits' Decrean Education 5th
1	Edition
	Reference Books
1	Manojit Mitra 'Microwave engineering' 3rd edition Dhannat Rai & Company
2	Peter A Rizzi 'Microwave Engineering Passive Circuits' PHI 1999
3	Annanurna Das Sisir Das 'Microwaye Engineering' April 1987 Tata McGraw
5	Hill Publication
4	Herbert I Reich I.G. Skalnik P.F. Ordung and H.I. Krauss 'Microwaya
т	Principles' 4th edition 1998
5	G S Raghuvanshi 'Microwaye Engineering' CENGAGE Learning
5	5. 5. Ragnavansin, Wherewave Engineering, CENOAOE Examining

Useful links		
1	https://archive.nptel.ac.in/courses/108/101/108101112/#watch	
2	https://onlinecourses.nptel.ac.in/noc20_ee91/preview	

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOLROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u>E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge"

Session: 2024-25

VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2.To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	P	Credits
VII	ET7E004A	Machine Learning	3	0	0	3

Prerequisites for the course		
1	Basic knowledge of programming	
2	Basic knowledge of probability theory and linear algebra	

	Prior Reading Material / useful links
1	https://onlinecourses.nptel.ac.in/noc22_cs29/preview
2	https://nptel.ac.in/courses/106106139

Sr.No	Course outcome number	CO statement
1	CO1	Understand a very broad collection of machine learning algorithms and problems.
2	CO2	Appreciate the importance of visualization in the data analytics solution.
3	CO3	Apply structured thinking to unstructured problems.
4	CO4	Learn algorithmic topics of machine learning and mathematically deep enough to introduce the required theory.
5	CO5	Develop an appreciation for what is involved in learning from data.

	Course Contents
Unit I	Introduction
	Learning Problems, Perspectives and Issues, Concept Learning, Version Spaces
	and Candidate Eliminations, Inductive bias, Decision Tree learning,
	Representation, Algorithm, Heuristic Space Search. [5Hours]
Unit II	Neural Networks and Genetic Algorithms
	Neural Network Representation, Problems, Perceptrons, Multilayer Networks and
	Back Propagation Algorithms, Advanced Topics, Genetic Algorithms, Hypothesis
	Space Search, Genetic Programming, Models of Evaluation and
	Learning. [7Hours]
Unit III	Bayesian and Computational Learning Bayes Theorem, Concept Learning,
	Maximum Likelihood, Minimum Description Length Principle, Bayes Optimal
	Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network,
	EM Algorithm, Probability Learning, Sample Complexity, Finite and Infinite
	Hypothesis Spaces, Mistake Bound Model. [7Hours]
Unit IV	Instant Based Learning
	K- Nearest Neighbour Learning, Locally weighted Regression, Radial Bases
	Functions, and Case Based Learning. [6Hours]
Unit V	Advanced Learning
	Learning Sets of Rules, Sequential Covering Algorithm, Learning Rule Set, First
	Order Rules, Sets of First Order Rules, Induction on Inverted Deduction, Inverting
	Resolution, Analytical Learning, Perfect Domain Theories, Explanation Base
	Learning, FOLL Algorithm, Reinforcement Learning, Task, Q-Learning,
Unit VI	Introduction to Chaston Analysis & Chastoning Mathada
	The Clustering Task and the Requirements for Cluster Analysis Overview of
	Some Basic Clustering Methods Hierarchical Methods: Agglomerate versus
	Divisive Hierarchical Clustering Distance Measures Probabilistic Hierarchical
	Clustering Multiphase Hierarchical Clustering [6Hours]
	Text Books
1	Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private
	Limited, 2013.
2	Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and
	Machine Learning), The MIT Press 2004.
	Reference Books
1	Machine Learning Engineering, Andriy Burkov, ISBN-10: 1999579577, True
	Positive Inc. (8 September 2020)
2	Stephen Marsland,Machine Learning: An Algorithmic Perspective, CRC Press,
	2009.
3	Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verilog.
	Useful links
1	https://onlinecourses.nptel.ac.in/noc22_cs29/preview
2	https://nptel.ac.in/courses/106106139

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT **KATOLROAD, NAGPUR** Website:www.idcoem.ac.in E-mail:info@jdcoem.ac.in (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai **Department of Electronics and Telecommunication Engineering** "Rectifying Ideas, Amplifying Knowledge"

Session: 2024-25

VISION	MISSION		
	1. To provide quality teaching learning process		
"To be a Department providing high quality &	through well-developed educational		
globally competent knowledge of concurrent	environment and dedicated faculties.		
technologies in the field of Electronics and	2.To produce competent technocrats of high		
Telecommunication."	standards satisfying the needs of all		
	stakeholders.		

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	P	Credits
VII	ET7E004B	Digital Image Processing	3	0	0	3

Prerequisites for the course		
1	Signals and systems. Since DIP is a subfield of signals and systems, some knowledge about signals and systems, Calculus and probability.	
2	Types of images and its coding techniques,	
3	Basic programming skills.	

Prior Reading Material / useful links		
1	https://nptel.ac.in/courses/117105079	
2	https://onlinecourses.nptel.ac.in/noc19_ee55/preview	
3	https://nptel.ac.in/courses/117105135	

Sr.No	Course outcome number	CO statement
1	CO1	Recall the fundamental concepts of a digital image processing system.
2	CO2	Understand images in the frequency domain using various transforms.
3	CO3	Apply various techniques for image enhancement and image restoration.
4	CO4	Analyze various compression techniques
5	CO5	Interpret Image compression standards.

Syllabus:

	Course Contents
Unit I	Introduction and Digital Image Fundamentals
	Digital Image Fundamentals, Need for DIP, Fundamental steps in DIP, Human
	visual system, Image representation - Gray scale and Color images, Types of
	neighborhoods, Basic relationships between pixels, Distance Measures, [6 Hours]
Unit II	Basic operations on Images and Color Fundamentals.
	Image addition, subtraction, logical operations, scaling, translation, rotation,
	Image Histogram, Color fundamentals & models – RGB, HSI YIQ, image
	Sampling and quantization. [6Hours]
Unit III	Image Enhancement and Restoration
	Spatial domain enhancement: Point operations-Log transformation, Power-law
	transformation, Piecewise linear transformations, Histogram equalization.
	Filtering operations- Image smoothing, Image sharpening. Basic gray level
	Transformations, Low pass filtering, High pass filtering, Noise Models, Noise
	Reduction, Inverse Filtering, MMSE(Wiener)Filtering,[8Hours]
Unit IV	Image Compression
	Fundamentals of redundancies, Basic Compression Methods: Huffman coding,
	Arithmetic coding, LZW coding, JPEG Compression standard. [4Hours]
Unit V	Image Segmentation and Morphological Operations Image Segmentation:
	Point Detections, Line detection, Edge Detection-First order derivative –Prewitt
	and Sobel, Second order derivative – LoG, DoG, Canny, Edge linking, Hough
	Transform, Region Growing, Region Splitting and Merging, Dilation, Erosion,
	Opening, Closing, Hitor-Miss transform, Boundary Detection, Thinning,
	Thickening, Skeleton.[8Hours]
Unit VI	Representation and Description
	Representation – Chain codes, Polygonal approximation, Signatures. Boundary
-	Descriptors – Shape numbers, Fourier Descriptors. [6Hours]
1	Text Books
1	Gonzalez & Woods, —Digital Image Processing, 3rd ed., Pearson education,
	2008 Deference Books
1	Keterence Books
1	Milan Sonka, Vaciav Hlavav, Roger Boyle, —Image Processing, Analysis and Machine Vision 2nd ed. Themson Learning 2001
2	Machine Visioni, 2nd ed., Thomson Learning, 2001
2	Rangaraj M. Rangayyan, —Biomedical Image Analysis, CRC Press, 2005
3	Pratt W.K, —Digital Image Processing, 3rd ed., John Wiley & Sons, 2007
	Jain Anil K., —Fundamentals Digital Image Processing, Prentice Hall India,
	2010 Useful links
1	bttps://pptel.ac.in/courses/117105079
2	https://oplinecourses.pptel.ac.in/poc10_ec55/proview
2	https://onniecourses.npiei.ac.in/noc19_ee33/pieview
5	μπρδ.// πρισι.αυ. πη/ συμίδεδ/ 11 / 103 133

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOLROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u> E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge"

VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2.To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	P	Credits
VII	ET7E004C	Advanced Digital Signal	3	0	0	3
		Processing				

Prerequisites for the course				
1	Basic knowledge of Signals and Systems, Digital Signal Processing.			

Prior Reading Material / useful links		
1	https://nptel.ac.in/courses/117101001	
2	https://onlinecourses.nptel.ac.in/noc21_ee20/preview	

Sr.No	Course outcome number	CO statement
1	CO1	Represent discrete-time signals analytically and visualize them in the time domain.
2	CO2	Summarize the requirement of theoretical and practical aspects of DSP with regard to sampling and reconstruction.
3	CO3	Apply various techniques of filter designs for various applications.
4	CO4	Analyze Multi Rate Signal Processing and describe how to apply it for the wavelet transform.
5	CO5	Evaluate the Finite word length effects in Fixed point DSP Systems
6	CO6	Estimate the power spectral estimation methods.

	Course Contents
Unit I	Multirate Digital Signal Processing
	Introduction, Review of Decimation and Interpolation, Sampling Rate Conversion
	by a Rational Factor I/D, Filter Design and Implementation for sampling rate
	Conversion Multirate Digital Signal Processing Multistage, Implementation of
	Sampling Rate Conversion.[6Hours]
Unit II	Applications of Multirate Digital Signal Processing
	Applications of Multirate Signal Processing, Sampling Rate Conversion of
	Bandpass Signals Linear Prediction and Optimum Linear[4Hours]
Unit III	Filters
	Innovations Representation of a Stationary Random Process, Forward and
	Backward Linear Prediction, Solution of the Normal Equations, Properties of
	linear prediction - Error Filter, AR Lattice and ARMA Lattice-Ladder Filters.
	[7 Hours]
Unit IV	Power Spectral Estimation
	Estimation of Spectra from Finite Duration Observations of a signal, the
	Periodogram, Use DFT in power Spectral Estimation, Bartlett, Welch and
	Blackman, Tukey Methods, Comparison of performance of Non-Parametric
	Power Spectrum Estimation Methods[6Hours]
Unit V	Parametric Method of Power Spectrum Estimation
	Parametric Methods for power spectrum estimation, Relationship between Auto-
	Correlation and Model Parameters, AR (Auto-Regressive) Process and Linear
	Prediction, Moving Average(MA) and ARMA Models Minimum Variance
	Method. [7Hours]
Unit VI	Wavelet Transform
	Window Selection, Wavelet Transform, STFT to Wavelet conversion, Basic
	Wavelet, Discrete time orthogonal Wavelet, Continuous Time Orthogonal
	Wavelets. [6Hours]
1	
1	J. G. Proakis & D. G. Manolokis, "Digital Signal Processing – Principles,
	Algorithinis Applications, FHI. Reference Books
1	S. M. Kay, "Modern spectral Estimation techniques" DHI 1007 EmmanuelC
1	Ifeacher Barrie W Jervis "DSP – A Practical Approach" PearsonEducation
2	Oppendeim Alan V Discrete-time signal processing Pearson Education India
2	1999.
3	Mitra, Sanjit Kumar, and YonghongKuo. Digital signal processing: a computer-
	based approach. Vol. 2. New York: McGraw-Hill Higher Education, 2006.
	Useful links
1	https://nptel.ac.in/courses/117101001
2	https://onlinecourses.nptel.ac.in/noc21_ee20/preview

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u> E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Τ	P	Credits
VII	ET7L005	Basic Electronic Simulation	0	0	2	1
		Lab				

	Prerequisites for the course
1	Knowledge of Electronic Components and instruments.

	Prior Reading Material / useful links
1	https://youtu.be/NFXyItNODpQ
2	https://be-iitkgp.vlabs.ac.in/

Sr.No	Course outcome number	CO statement
1	CO1	Develop the Verilog/VHDL programs to simulate Combinational
		circuits in Dataflow, Behavioral and Gate level Abstractions.
2	CO2	Describe sequential circuits like flip flops and counters in
		Behavioral description and obtain simulation waveforms.
3	CO3	Synthesize Combinational and Sequential circuits on
		programmable ICs and test the hardware
4	CO4	Interface the hardware to the programmable chips and obtain the
		required output

	List of Experiments
	PART A
1	Develop a Verilog program for 2 to 4 decoder.
2	Develop a Verilog program for 8 to 3 encoder (without priority & with priority).
3	Develop a Verilog program for 8 to 1 multiplexer
4	Design 4 bit binary to gray converter in Verilog
5	Model in Verilog for a full adder and add functionality to performlogical
	operations of XOR, XNOR, AND and OR gates.
6	Write a Verilog code to model 32 bit ALU.
7	Write Verilog code for SR, D and JK and verify the flip flop.
8	Write Verilog code for 4-bit BCD synchronous counter.
9	Write Verilog code for counter with given input clock and check whether it
	works as clock divider performing division of clock by 2, 4, 8 and 16. Verifythe
	functionality of the code.
1	PARI-B
1	Developa Verilogcodetodesignaclockdividercircuitthatgenerates 1/2, 1/3rd
	and 1/4thclock from a given input clock. Port the design to FPGA and validate the functionality through oscilloscope
2	Interface a DC motor to EPCA and write Verilog code to change its speed and
2	direction
3	Interface a Stepper motor to FPGA and write Verilog code to control the Stepper
	motor rotation which in turn may control a Robotic Arm. External switches to be
	used for different controls like rotate the Stepper motor
	(i) +N steps if Switch no.1 of a Dip switch isclosed
	(ii) $+N/2$ steps if Switch no. 2 of a Dip switch is closed
	(iii) –N steps if Switch no. 3 of a Dip switch is closedetc.
4	Interface a DAC to FPGA and write Verilog code to generate Sine wave of
	frequency F KHz (eg. 200 KHz) frequency. Modify the code to down sample the
	frequency to F/2 KHz. Display the Original and Down sampled signals by
5	connecting them to an oscilloscope.
2	Write Verilog code using FSM to simulate elevator operation.
6	Write Verilog code to convert an analog input of a sensor to digital form and to
	display the same on a suitable display like set of simple LEDs, 7-segment
	display
	digits or LCD display.

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD,NAGPUR Website:<u>www.idcoem.ac.in</u>E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	Р	Credits
VII	ET7L001	Digital Communication Lab	0	0	2	1

Prerequisites for the course			
1	Basic knowledge of Communication System Engineering, error control		
	coding, Digital Communications, Signals and Systems.		

	Prior Reading Material / useful links
1	https://onlinecourses.nptel.ac.in/noc21_ee11/preview
2	https://nptel.ac.in/courses/117101051

Sr.No	Course outcome number	CO statement
1	CO1	Evaluate the performance of PCM, DPCM and Delta modulation schemes.
2	CO2	Implement different digital modulation schemes like FSK, PSK, and DPSK.
3	CO3	Analyze source/channel encoding & decoding methods.
4	CO4	Simulate Pulse Digital Modulation & demodulation using MATLAB.
5	CO5	Simulate digital communication techniques like ASK, FSK & PSK.

List of Expe	riments:
Trainer Kit	Based Experiments
1	Generation and Detection of Pulse Code Modulation for both A.C and
	D.C signals
2	Generation and Detection of Differential Pulse Code Modulation
3	Generation and Detection of Delta Modulation
4	Generation and Detection of PSK.
5	Generation and Detection of FSK.
6	Generation and Detection of DPSK.
7	Generation and Detection of QPSK.
8	Linear Block code-Encoder and Decoder
9	Convolution code-Encoder and Decoder
10	To study the Spectrum Analyzer
Simulation H	Based Experiments (Open Source/Matlab/Multisim)
1	Amplitude Shift Keying
2	Phase Shift keying
3	Time Division Multiplexing
4	Pulse Code Modulation

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u>E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai Department of Electronics and Telecommunication Engineering "Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

	2024-23
VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2. To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Τ	Р	Credits
VIII	ET8E001A	5G Wireless Networks	3	0	0	3

Prerequisites for the course			
1	Basic knowledge of Digital and Wireless communication		

	Prior Reading Material/useful links
1	https://www.qualcomm.com/5g/what-is- 5g#:~:text=A%3A%205G%20is%20based%20on,sub%2D6%20GHz%20and%20 mmWave.
2	https://www.techtarget.com/searchnetworking/feature/Understand-the-basics-of- 5G-wireless-networks

Sr. No	Course outcome number	CO statement
1	C01	Understand the objectives of 5G
2	CO2	Compare 5G Architecture with 4G Architecture.
3	CO3	Analyze the principles of Softwarization in5G.
4	CO4	Explain the concept of MEC and Fog computing.
5	CO5	Evaluate physical layer design in 5G.
6	CO6	Characterize and analyze network security aspect in 5G.

	Course Contents			
Unit I	Introduction5GPP&NGMN,5GDesignObjectivePart1,5GDesignObjectivePart2,ITU-RIMT-2020 vision for 5G, 5G Spectrum Requirements, Globally Harmonised 5GSpectrum, 5G Industry Progress, 5G Network Perspectives.[6 Hours]			
Unit II	Architecture 5G Scenarios, 5G RAN, 5G Mobile Core and Operating System, 5G Architecture View, 5G Network Slicing, 5G Architecture Plane Part 1, 5G Architecture Plane Part 2, Logical and Functional 5G Architecture, Dynamic CRAN, 5G NR Logical Architecture [7 Hours]			
Unit III	Programmability and Softwarization Network Programmability and Softwarization, Network Programmability. [5 Hours]			
Unit IV	Mobile Edge Computing and FOG ComputingMEC Introduction, MEC Concept, MEC Architecture, MEC Benefits, Fog Computing.Computing.			
Unit V	Radio Access TechnologiesMillimeter Wave Propagation, Flexible Physical Layer Design Part 1, FlexiblePhysical Layer Design Part 2, Distributed Massive MIMO Principles, EnergyTransfer for Massive MIMO[7 Hours]			
Unit VI	VI Network Security 5G Security, 5G Security Goals, 5G New Trust Model, Diversified Identity Management, User Privacy Protection Requirement,5G Core Security,5GRadio Network Security. [7Hours]			
	Text Books			
1	R. Vannithamby and S. Talwar, Towards 5G: Applications, Requirements and Candidate Technologies. John Willey & Sons, West Sussex, 2017.			
2	Manish, M., Devendra, G., Pattanayak, P., Ha, N., 5G and Beyond Wireless Systems PHY Layer Perspective, Springer Series in Wireless Technology.			
Reference Books				
1	T. S. Rappaport, R. W. Heath Jr., R. C. Daniels, and J. M. Murdock, Millimeter Wave Wireless Communication., Pearson Education, 2015.			
2	M. Vaezi, Z. Ding, and H. V. Poor, Multiple Access techniques for 5G Wireless Networks and Beyond., Springer Nature, Switzerland, 2019			
	Useful linkss			
1	https://onlinecourses.nptel.ac.in/noc21_ee12/preview			
2	https://5g.systemsapproach.org/intro.html			

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Website:<u>www.jdcoem.ac.in</u> E-mail<u>:info@jdcoem.ac.in</u> (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai **Department of Electronics and Telecommunication Engineering** "Rectifying Ideas, Amplifying Knowledge" Session: 2024-25

	202120
VISION	MISSION
	1. To provide quality teaching learning process
"To be a Department providing high quality &	through well-developed educational
globally competent knowledge of concurrent	environment and dedicated faculties.
technologies in the field of Electronics and	2. To produce competent technocrats of high
Telecommunication."	standards satisfying the needs of all
	stakeholders.

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Т	P	Credits
VIII	ET8E001B	Modern Digital Communication System	3	0	0	3

Prerequisites for the course		
1	Basic knowledge of Digital communication.	
2	Basic knowledge about different communication techniques.	

	Prior Reading Material/useful links
1	https://www.youtube.com/watch?v=hTAlcrqjNps
2	https://www.egr.msu.edu/~tongli/teaching/ece865/Introduction

Sr. No	Course outcome number	CO statement
1	CO1	Understand the principles and theories required to design reliable communication link
2	CO2	Compare different digital communication techniques and judge their applicability and performance in different application scenarios.
3	CO3	Evaluate mathematical modeling to solve problems in wireline and wireless digital communications.
4	CO4	Develop skill set to choose and optimize design parameters [e.g., power distribution, modulation, redundancy, speed] in advanced communication technologies used in the telecommunication industry.
5	CO5	Improve fundamental grounding and sophistication needed to explore topics in Advanced and Emerging wireless communication standards like 4G, 5G and different WLAN that include MIMO, mmWave communication

	Course Contents
Unit I	Introduction Introduction to Digital Communication, Elements of Digital Communication, Mathematical Models for Communication Channels and their characteristics, Review system designing and performance aspects, Networks aspects of digital interface, Historical background and developments in modern digital communication. [5Hours]
	Mathematical Preliminaries
Unit II	Signals, LTI system, The Nyquist Sampling theorem, Complex envelope
	representation, the spectrum of bandpass signal, low pass equivalent of bandpass
	signal, Energy considerations, low pass equivalent of a band pass system. Signal
	space representation of waveforms: Vector space concepts, Signal space concepts,
	Orthogonal expansions of signals, Gram-Schmidt procedure. [6Hours]
I Init III	Digital Modulation Schemes and Optimum Receivers for AWGN
Unit III	Channels
	Representation of digitally modulated signals, Multidimensional Signaling, Signaling
	schemes and their comparison. The Nuquist criterion for ISI evolutions
	Receivers for AWGN Channels: Waveform and Vector Channel models. Optimum
	reception in AWGN error probability of hand-limited and power limited signaling
	detection non-coherent detection. [8Hours]
	Carrier and symbol Synchronization
Unit IV	Receiver design requirements, Signal Parameter estimation: Carrier recovery and
	symbol synchronization in signal demodulation, Carrier Phase estimation, Symbol
	timing estimation, Joint estimation of Carrier Phase and Symbol timing, Performance
	characteristics of ML estimators. [7Hours]
	Information-Theoretic Limits and Channel Coding
Unit V	The capacity of AWGN Channel: modeling and geometry, Shannon theory basics:
	entropy, mutual information, and divergence, channel coding theorem, the capacity of
	standard constellations, parallel Gaussian channels and water filling Channel codes:
	Binary convolution codes, Turbo codes and iterative coding, LDPC codes, bandwidth-
	efficient coded modulation. [7Hours]
[]n:4 \7]	Digital Modulation for Wireless Communication
Unit VI	Physical modeling for wireless channels, Fading and diversity, OFDM, CDMA, MIMO-
	linear array, Beam-steering, MIMO-OFDM, Spatial Multiplexing, Space- time
	Coding . [6 Hours]

	Text Books
1	John. G. Proakis, Digital Communications, McGraw Hill
2	Upamanyu Madhow, Fundamentals of Digital Communication, Cambridge
	University Press, 2012
	Reference Books
1	B. P. Lathi, Modern Digital and Analog Communication Systems, Oxford
	University Press, 4th Ed., 2009
2	J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, Kluwer
	Academic Publishers, 2004
3	Simon Haykin, "Communication Systems," John Wiley & Sons, 5th Ed., 2009.
	Useful links
1	https://eng.uok.ac.ir/mohammadkhani/courses/AdvDigitalComm_94_2.html
2	https://www.psa.gov.in/technology-frontiers/advanced-communication-
	technologies/758

JAIDEV EDUCATION SOCIETY'S JD COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD,NAGPUR Website:<u>www.jdcoem.ac.in</u>E-mail<u>:info@jdcoem</u>.ac.in (An Autonomous Institute, with NAAC "A" Grade) Affiliated to DBATU, RTMNU & MSBTE Mumbai

Department of Electronics and Telecommunication Engineering

"Rectifying Ideas, Amplifying Knowledge"

Session: 2024-25

VISION	MISSION		
	1. To provide quality teaching learning process		
"To be a Department providing high quality &	through well-developed educational		
globally competent knowledge of concurrent	environment and dedicated faculties.		
technologies in the field of Electronics and	2. To produce competent technocrats of high		
Telecommunication."	standards satisfying the needs of all		
	stakeholders.		

Program: B.Tech Electronics and Telecommunication Engineering

Semester	Course Code	Name of the course	L	Τ	P	Credits
VIII	ET8O004	Advanced Processors &	4	0	0	4
		Controllers				

	Prerequisites for the course
1	Basic knowledge of digital circuits.
2	Basic Idea about microprocessors & Microcontrollers and their interfacing.

	Prior Reading Material/useful links
1	https://www.elprocus.com/what-is-digital-circuit-design-and-its-applications/
2	https://www.agner.org/digital/digital_electronics_agner_fog.pdf

Sr.No	Course outcome number	CO statement
1	CO1	Understand basic concepts of microprocessor 8085.
2	CO2	Explain the hardware architecture of Microprocessor and microcontroller
3	CO3	Analyze Arduino Boards and Components.
4	CO4	Develop simple assembly language programs.
5	CO5	Design practical applications of different processors.

	Course Contents
Unit I	Introduction to 8085 Microprocessor systems with bus organization, Microprocessor Architecture & Operations,Memory,I/ODevice,MemoryandI/OOperations,Introductionto8085 assembly language programming, 8085 Microprocessor Architecture and its operation, Address, Data and Control Buses, Pin Functions, De-multiplexing of Buses, Generation Of Control Signals. Assembly Language Programming Basics, Introduction to 8085 instructions, Addressing Modes, Writing, Assembling & executing a Program. [10 Hours]
Unit II	Introduction to 8051Microcontrollers:MicroprocessorsandMicro-controllers,8051controller,BlockDiagram &Architecture. 8051 Instruction Set, Addressing modes & introductionto programming. 8051 Timers, Serial I/O,Interrupts.[8Hours]
Unit III	ARM ProcessorsARM Micro-controllers – overview; features, ARM 7 – architecture, Thumb,Register Model, Addressing modes. The RISC design philosophy, ARM designphilosophy, embedded system hardware- AMBA bus protocol, Registers, CPSR-Processor modes, Banked registers. Pipeline- Characteristics. Fundamentals ofARM instructions, Barrel shifter. Advantages & Disadvantages of ARMprocessors.[8Hours]
Unit IV	ArduinoIntroduction to Arduino, Architecture, Advantages, Versions of Arduino, Characteristics and layout of UNO, Introduction to Arduino IDE software, Introduction to sensors and actuators. Case study example.[7 Hours]
Unit V	Introduction to Raspberry Pi Introduction to Raspberry Pi ,OS for Raspberry Pi, Raspberry Pi processor, Versions of Raspberry pi models, Hardware components of Raspberry Pi3,Case study of IoT Applications based onRaspberryPi. [8Hours]
Unit VI	Applications of 8085 & 8051 Case study: Traffic Controller using 8085 Microprocessor, Temperature Control Using 8051 Microcontroller, ARM Cortex [STM32] based Solar Street Light Arduino Based Home Automation System, Quadcopter using Raspberry Pi. [7 Hours]
	Text Books
1	Steve Heath, "Embedded System Design" Butterworth Helnemann.
2 3	Kenneth J. Ayala "The 8051 Micro-controller Architecture, Programming & Applications", Second Edition, Penram International & Thomson Asia.
4	John B. Peatman, "Design with PIC Micro- controllers", Low Price Edition, Pearson Education
5	Microprocessor Architecture, Programming & Applications, by Goankar, 6th
6	Fundamentals of Microprocessor and Microcontrollers, by B.Ram, DhanpatRai Publications, 9th edition 2019.

7	Simon Monk, "Programming the Raspberry Pi: Getting Started with Python",
	January 2012, McGraw Hill Professional
	Reference Books
1	ARM System Developer's guide – Andrew N. Sloss, Elsevier Publications,
	ISBN 978-81-8147- 646-3, 2016
2	ARM Assembly Language – William Hohl, CRC Press, ISBN:978-81-89643-04-1
3	ARM System-on-chip Architecture by Steve Furber, Pearson Education,
	ISBN978-81- 317-0840-8, 2E,2012
4	LPC 2148 User Manual
5	Embedded Systems: A Contemporary Design Tool- James K. Peckol
<i>(</i>	ISBN: 978-0-471- 72180-2 October 2007, ©2008
6	Eben Upton and Gareth Halfacree, "Raspberry Pi User Guide", August 2016, 4th
	edition, John Wiley & Sons
/	Alex Bradbury and Ben Everard, "Learning Python with Raspberry Pi", Feb 2014,
0	John Wiley & Sons
0	Michael Margolis, "Arduino Cookbook", First Edition, March 2011, O'Relly
	Media, Inc
	Useful links
1	Luce // market and the second s
1	nttps://www.raspberrypi.org/magpiissues/Projects_Book_v1.pdf
2	https://www.sim8085.com/
3	http://www.edsim51.com/
4	https://nptel.ac.in/courses/117104072
5	https://archive.nptel.ac.in/content/storage2/courses/106108100/pdf/Lectu
	re_Notes/LNm1.pdf
б	https://ict.iitk.ac.in/courses/learn-iot-through-arduino-and-raspberry-pi/